

Thermochimica Acta 370 (2001) 125-128

thermochimica acta

www.elsevier.com/locate/tca

The system $CePO_4 - K_3PO_4$

Irena Szczygiel*

Department of Inorganic Chemistry, Faculty of Engineering and Economics, Wroclaw University of Economics, ul. Komandorska 118/120, 53-345 Wroclaw, Poland

Received 4 October 2000; received in revised form 22 November 2000; accepted 12 December 2000

Abstract

The phase diagram of the system CePO₄–K₃PO₄ has been determined based on investigations by differential thermal analysis, X-ray powder diffraction, IR spectroscopy and optical microscopy. The system contains only one intermediate compound K₃Ce(PO₄)₂, which melts incongruently at $(1500 \pm 20)^{\circ}$ C. This compound is stable down to room temperature and exhibits a polymorphic transition at 1180°C. It was confirmed that the low-temperature form β -K₃Ce(PO₄)₂ crystallizes in a monoclinic system, space group P2₁/m with unit cell parameters *a* = 9.579 (5), *b* = 5.634 (6), *c* = 7.468 (5) Å; $\alpha = \gamma = 90^{\circ}$, $\beta = 90.81$ (3)°; *V* = 403.083 Å³. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Cerium orthophosphate; Potassium orthophosphate; Phase diagram; X-ray analysis

1. Introduction

In recent years, double and triple phosphates with the general formulae $M_3^I Ln(PO_4)_2$ and $M^I M^{II} Ln(PO_4)_2$ (where M^I denotes an alkali metal, M^{II} an alkaline earth metal and Ln is a rare earth element) have gained increasing attention [1–9]. Lanthanide phosphates have been examined with respect to their luminescence properties [2] and energy transfer phenomena [3], for use as new luminophore and laser materials, as ionic conductors, as hosts for actinide ions and for other possible applications.

Double orthophosphates $M_3^1Ln(PO_4)_2$, according to their composition, could occur in the ternary systems $Ln_2O_3-M_2O-P_2O_5$ on the binary sections $M_3PO_4 LnPO_4$. Binary and ternary systems, including rare earth phosphates as well as phosphates of alkali metals and of alkaline earth elements, have been investigated in our laboratory for a number of years. In the present

paper, the results of investigations of the binary system $CePO_4-K_3PO_4$ are described. Its phase diagram has not been reported. Even so, an intermediate orthophosphate of $K_3Ce(PO_4)_2$ has been reported [7–9].

Potassium-rare earth orthophosphates are usually synthesized by solid state reactions. Bamberger et al. [8,9] prepared K₃Ce(PO₄)₂ by firing mixtures of K₃PO₄ and CePO₄ to 500°C in air, followed by further calcination at 950°C in flowing helium. Letho et al. [7] obtained K₃Ce(PO₄)₂ by heating a mixture of CePO₄, KNO₃ and NH₄H₂PO₄ (mole ratios 1:3:1) at 1000°C for 24 h. K₃Ce(PO₄)₂ has a monoclinic unit cell (P2₁/m) with the parameters a = 9.621 (1), b = 5.656 (3), c = 7.496 (1) Å; $\beta = 90.6$ (1)° [7]. The compound is isotypic with K₃Nd(PO₄)₂.

2. Experimental

The following initial reagents were used: $Ce(NO_3)_3$ · 6H₂O, NH₄H₂PO₄ and K₃PO₄·3H₂O, all analytically pure. The samples in the binary system $CePO_4$ -K₃PO₄

E-mail address: szczygl@credit.ae.wroc.pl (I. Szczygiel).

^{0040-6031/01/\$ –} see front matter 2001 Elsevier Science B.V. All rights reserved. PII: \$0040-6031(00)00775-9

were prepared from cerium orthophosphate CePO₄ and potassium orthophosphate K₃PO₄. Cerium orthophosphate CePO₄ was obtained from Ce(NO₃)₃·6H₂O and NH₄H₂PO₄ by the method described in [8]. Potassium orthophosphate K₃PO₄ was obtained from K₃PO₄·3H₂O by dehydration at 900°C for 1 h.

The phase investigation was carried out by differential thermal analysis (DTA) during heating, powder X-ray diffraction, infrared (IR) spectroscopy and optical microscopy. The DTA-heating was carried out by means of a derivatograph-type 3427 (MOM, Hungary) within temperature range 20–1400°C with heating rate 10° C/min. Platinum crucibles and air atmosphere were used. High purity Al₂O₃ was used as the standard substance. Temperatures were read by means of a Pt/ Pt10Rh thermocouple, which was calibrated against the melting points of Ca₂P₂O₇ (1353°C), K₂SO₄ (1070°C) and NaCl (801°C). The high-temperature thermal studies above 1400°C was carried out in an atmosphere of argon in a horizontal, resistance furnace with molybdenum winding. Temperature were read by

means of an optical pyrometer, which was calibrated against the melting points of Na₃PO₄ (1583°C) and $Ca_3(PO_4)_2$ (1810°C). The examined samples were pressed into pellets, placed in platinum boats, sintered at 900°C for 20 h and then fused. The quenching technique was also used for phase determination. The obtained phases were identified by powder Xray analysis at room temperature on an HZG-4 diffractometer (Cu Ka radiation) and a Siemens D 5000 diffractometer (Cu Ka radiation, Ni filter, scintillating counter). The EVA software (DIFFRACT PLUS package) was applied to process the experimental spectra (including background removing, smoothing, $K\alpha_2$ stripping and peak finding). The PDF-2 data base (ICDD) was searched to detect the phases present in the samples (with the restricting condition that they must include the following elements K, Ce, P and O). The phase purity of the reagents and phase composition of the alloys were controlled microscopically. Microsections were prepared from molten and crystallized samples, which were polished and examined

Fig. 1. The phase diagram of the binary system CePO₄-K₃PO₄.

I. Szczygiel/Thermochimica Acta 370 (2001) 125-128

1

2

3

4

5

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

optically. IR spectra were measured over the range $1400-400 \text{ cm}^{-1}$ (with KBr as diluent) with a Specord M-80 spectrophotometer (Carl Zeiss, Jena).

3. Results and discussion

The phase diagram of the binary system CePO₄– K_3PO_4 , which is presented in Fig. 1, has been determined in the whole range of composition and up to $t = 1800^{\circ}$ C. The samples from this system are highmelting (above 1400°C). Liquids and solids curves are determined by optical pyrometer. Solid state equilibria were determined by DTA during heating sintered samples and also molten and crystallized samples.

It has been found that the initial orthophosphates form one intermediate compound with molar ratio CePO₄:K₃PO₄ = 1:1 (47.45 wt.% K₃PO₄, 52.55 wt.% CePO₄) and formula K₃Ce(PO₄)₂. The compound melts incongruently at ~1500°C and it is stable to room temperature. It follows from DTA and X-ray analysis that K₃Ce(PO₄)₂ appears in two polymorphic modifications. The transition between α - and β -K₃Ce-(PO₄)₂ takes place at t = 1180°C and is accompanied by a very strong thermal effect on the DTA-curve. The effect occurs in the entire range of composition in the system CePO₄-K₃PO₄.

It is not possible to stabilize the high-temperature form, α -K₃Ce(PO₄)₂, at room temperature by ice quenching. X-ray studies of the low-temperature form, β -K₃Ce(PO₄)₂, have shown no phases, except for K₃Ce(PO)₄, which matches the experimental pattern. The PROSZKI software [11] exploiting procedure named APPLE (LSQ refinement) [12] was used to refine lattice parameters. The indexing of the reflections are given in Table 1.

The low-temperature phase β -K₃Ce(PO₄)₂ crystallizes in the monoclinic (β -unique) system (P2₁/m space group) with the parameters a = 9.579 (5), b = 5.634 (6), c = 7.468 (5) Å; $\alpha = \gamma = 90^{\circ}$, $\beta =$ 90.81 (3)°; V = 403.083 Å³ in accordance with data given in [7]. The IR spectrum of β -K₃Ce(PO₄)₂, within the range 1400–400 cm⁻¹, is given in Fig. 2.

In our laboratory it was found that pure $K_3Ce(PO_4)_2$ can be obtained through the solid state reaction by sintering an equimolar mixture of the parent phosphates at a temperature of 900°C for 20 h. This phosphate also is formed as a result of the slow

04	-		~ -	
ter-	6	$\frac{200}{100}$	9.7	4.77546
$\frac{1}{2}$	7	111	34.3	4.07394
	8	201	79.7	4.05081
ıgh-	9	201	3.4	3.99893
are	10	210	5.4	3.64359
bria	11	102	10.5	3.46329
ered	12	$\overline{2}$ 1 1	16.8	3.28975
licu	13	211	25.0	3.26092
s.	14	300	2.8	3.18863
ates	15	012	30.0	3.11477
atio	16	112	82.9	2.96729
rt.%	17	$\overline{3}$ 0 1	100.0	2.94873
und	18	202	19.2	2.92095
una	19	020	73.2	2.81602
e to	20	$\overline{3} 1 0$	88.8	2.77684
-ray	21	120	10.5	2.69816
ohic	22	021	8.9	2.63524
Ce-	23	$\overline{3}$ 1 1	11.9	2.61375
hied	24	$\overline{1} 2 1$	5.5	2.54430
ncu	25	$\overline{3}02$	9.7	2.44483
The	26	$\overline{1}$ 0 3	19.5	2.41828
the	27	103	9.7	2.40033
	28	221	19.5	2.30397
ture	29	$\overline{4}01$	11.0	2.29112

022

122

411

411

321

402

303

303

 $\overline{4}12$

412

501

131

231

502

132

521

13.5

16.9

24.6

19.0

19.9

7.6

9.7

21.2

21.2

15.7

17.8

7.6

5.1

5.9

16.1

13.1

Table	1				
X-ray	analysis	data	for	$\beta\text{-}K_3Ce(PO_4)_2$	modyfication

Intensities

5.7

75.4

5.9

5.5

35.6

 $d_{\rm obs}$ (Å)

9.51500

7.43154

5.91320

5.82691

4.84401

2.24900

2.18581

2.12216

2.10651

2.03884

2.00430

1.97747

1.95022

1.91063

1.88751

1.84858

1.79082

1.70111

1.69570

1.65222

1.54662

h k l

100

001

 $\bar{1}01$

101

110

cooling of a fused, equimolar mixture of $CePO_4$ and K_3PO_4 .

Investigations of the polymorphic transitions in the initial phosphates confirm that CePO₄ appears in two polymorphic modifications ($t_{trs} = 620^{\circ}C$

 d_{calcs} (Å)

9.57851

7.46778

5.93033

5.84929

4.85660

4.78925

4.08480

4.05768

4.00569

3.64917

3.46233

3.29273

3.26476

3.19284

3.11251

2.97049

2.95094

2.92464

2.81729

2.77786

2.70280

2.63595

2.61413

2.54473

2.44382

2.41760

2.40095

2.30441

2.28973

2.24894

2.18526

2.12127

2.10628

2.03774

2.00284

1.97678

1.94976

1.90887

1.88717

1.84931

1.79054

1.70054

1.69472

1.65093

1.54600

Fig. 2. IRS of β -K₃Ce(PO₄)₂.

[10]). Polymorphic transitions of potassium orthophosphate K₃PO₄ were investigated by many authors [13– 15]. Znamierowska [15] re-examined molten and sintered K₃PO₄ during cooling and heating by thermal, dilatometric and X-ray methods. Obtained results indicate that K₃PO₄ melts congruently at 1620°C and appears in three polymorphic modifications. The transitions in molten K₃PO₄, as observed during cooling, take place at 1066–1051°C (α/β) and 545°C (β/γ). The α/β -K₃PO₄ transition during heating takes place in the temperature range 1060–1150°C.

The DTA-curves of the CePO₄-K₃PO₄ system show no thermal effects associated with the transition α/β -CePO₄, which is most likely subsequent to the inhibiting influence of K₃Ce(PO₄)₂. In contrast, for the composition range from 50-70 wt.% of K₃PO₄, the DTA-curves of molten samples reveal the thermal effects at 1060 and 1120°C (during heating), which are connected with the transition α/β -K₃PO₄. The effects are absent in the K₃PO₄-rich part of the system. The β/γ transition of K₃PO₄ is also not observed. This is most likely due to limited solubility of the components in the liquid state within the composition range 75-100 wt.% K_3PO_4 , at high temperatures $(\sim 1600^{\circ}C)$. In this region liquid immiscibility is observed (cf. Fig. 1). The critical temperature (given by point B) is $(1655 \pm 20)^{\circ}$ C. The monotectic temperature (given by point M) is $(1590 \pm 20)^{\circ}$ C.

The eutectic occurs at 57.5 wt.% of K_3PO_4 at $t = 1380^{\circ}C$. The composition of the liquid at the peritectic decomposition of $K_3Ce(PO_4)_2$ is ~50 wt.% of K_3PO_4 .

Potassium orthophosphate K_3PO_4 is a very hygroscopic compound. The samples rich in K_3PO_4 easily absorb moisture, which has been a serious obstacle during the course of investigations. Hence, microscopic observations could be realized only for the samples richer in CePO₄.

Acknowledgements

The author thanks Dr. P. Wilk for his help in the X-ray experiments.

References

- K.A. Gschneidner Jr. (Ed.), Industrial application of rare earth elements in ACS, Symp. Ser. 164 (1981).
- [2] B. Finke, L. Schwarz, P. Gürtler, M. Kraas, M. Joppien, J. Becker, J. Luminescence 60/61 (1994) 975.
- [3] A.M. Srivastava, M.T. Sobieraj, A. Valossis, S.K. Ruan, E. Banks, J. Electrochem. Soc. 137 (1990) 2959.
- [4] H.Y.P. Hong, S.R. Chinn, Mater. Res. Bull. 11 (1976) 421.
- [5] H. Wulff, B. Finke, L. Schwarz, Z. Phys. Chem. 262 (1981) 1155.
- [6] L. Schwarz, B. Finke, G. Loos, J. Radioanal. Chem. 83 (1984) 83.
- [7] J.Z. Letho, P. Houenou, R. Eholie, C. R. Acad. Sci. Ser. 2 (307) (1988) 1177.
- [8] C.E. Bamberger, P.R. Robinson, R.L. Sherman, Inorg. Chim. Acta 34 (1979) L203.
- [9] C.E. Bamberger, R.G. Haire, G.M. Begun, L.C. Ellingboe, Inorg. Chim. Acta 95 (1984) 49.
- [10] I. Szczygiel, T. Znamierowska, J. Solid State Chem. 95 (1991) 260.
- [11] W. Lasocha, K. Lewinski, PROSZKI-system of programs for powder diffraction data analysis, Ver 2.4, Jagielon University, Krakow, Poland.
- [12] E. Appleman, H.T. Evans Jr., E. Handwerker, APPLEMANprogram for indexing and least squares unit cell refinement, freeware taken from Internet.
- [13] G.A. Buhalova, I.V. Mardirosova, Z. Neorg. Khim. 12 (1967) 2825.
- [14] A.W. Kolsi, Rev. Chim. Minerale 13 (1976) 416.
- [15] T. Znamierowska, Polish J. Chem. 55 (1981) 747.